对于抛物线y=ax2+4ax-m(a≠0)与x轴的交点为A(-1,0),B(x2,0),则下列说法:
①一元二次方程ax2+4ax-m=0的两根为x1=-1,x2=-3;
②原抛物线与y轴交于点C,CD∥x轴交抛物线于D点,则CD=4;
③点E(1,y1)、点F(-4,y2)在原抛物线上,则y1>y2;
④抛物线y=-ax2-4ax+m与原抛物线关于x轴对称.其中正确的有( )
【答案】B
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/13 8:0:9组卷:841引用:5难度:0.4
相似题
-
1.已知二次函数y=x2-mx+m-2:
(1)求证:不论m为任何实数,此二次函数的图象与x轴都有两个交点;
(2)当二次函数的图象经过点(3,6)时,确定m的值,并写出此二次函数与坐标轴的交点坐标.发布:2025/6/24 17:0:1组卷:1313引用:11难度:0.7 -
2.二次函数y=2x2-2x+m(0<m<
),如果当x=a时,y<0,那么当x=a-1时,函数值y的取值范围为( )12发布:2025/6/25 5:30:3组卷:143引用:2难度:0.7 -
3.抛物线y=x2-2x+1与坐标轴交点个数为( )
发布:2025/6/24 17:30:1组卷:1079引用:22难度:0.9
相关试卷