试卷征集
加入会员
操作视频

已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)【特殊情况,探索结论】
如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE
=
=
DB(填“>”、“<”或“=”).
(2)【特例启发,解答题目】
如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,并说明理由.(提示:过点E作EF∥BC,交AC于点F)
(3)【拓展结论,设计新题】
在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).

【考点】三角形综合题
【答案】=
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/22 16:0:8组卷:419引用:12难度:0.3
相似题
  • 1.如图,在△ABC中,∠BAC=90°,以AB为一边向外作正方形ABDE,点F为直线BC上的一点,连接DF,作FG⊥DF交直线AB于点G.
    (1)如图1,若AB=AC,点F在线段BC上,请直接写出线段DF与FG的数量关系;
    (2)如图2,若AB=
    3
    AC,点F在线段BC上,试探究线段BD,BF,BG三者之间的数量关系,并证明你的结论;
    (3)若AB=
    3
    AC,AB=3,DF=2
    2
    ,请直接写出AG的长.

    发布:2025/5/25 8:30:2组卷:125引用:1难度:0.2
  • 2.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,连接DB.
    (1)证明:△EAC≌△DBC;
    (2)当点A在线段ED上运动时,猜想AE、AD和AC之间的关系,并证明.
    (3)在A的运动过程中,当
    AE
    =
    2
    AD
    =
    6
    时,求△ACM的面积.

    发布:2025/5/25 8:30:2组卷:376引用:5难度:0.1
  • 3.【阅读理解】
    截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.
    (1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.
    解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.
    根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是

    【拓展延伸】
    (2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;
    【知识应用】
    (3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长为
    cm.

    发布:2025/5/25 9:0:1组卷:427引用:6难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正