问题情景 如图1,△ABC中,有一块直角三角板PMN放置在△ABC上(P点在△ABC内),使三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.
试问∠ABP与∠ACP是否存在某种确定的数量关系?
(1)特殊探究:若∠A=50°,则∠ABC+∠ACB=130130度,∠PBC+∠PCB=9090度,∠ABP+∠ACP=4040度;
(2)类比探索:请探究∠ABP+∠ACP与∠A的关系.
(3)类比延伸:如图2,改变直角三角板PMN的位置;使P点在△ABC外,三角板PMN的两条直角边PM、PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.

【考点】三角形内角和定理.
【答案】130;90;40
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:3040引用:7难度:0.3
相似题
-
1.已知:如图,△ABC中,∠ABC=∠C,BD是∠ABC的平分线,且∠BDE=∠BED,∠A=100°,求∠DEC的度数.
发布:2025/1/24 8:0:2组卷:117引用:4难度:0.5 -
2.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:
(1)∠BAC=2
(2)BC=2
(3)发布:2025/1/24 8:0:2组卷:45引用:1难度:0.5 -
3.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则:
(1)∠A1=度;
(2)∠A2013=度.发布:2025/1/24 8:0:2组卷:109引用:1难度:0.5