如图,正方形ABCD,点E,F是对角线AC上的两个动点,连接BE,BF,延长BF交CD于点H,∠EBF=45°.△ABE和△GBE关于直线BE对称.
(1)求证:∠FBG=∠FBC;
(2)如备用图,若点H是CD边的中点,连接DG,CG.延长BG交AD于点M.
①求证:DG⊥CG;②求MDAD的值.

MD
AD
【考点】四边形综合题.
【答案】(1)(2)①证明见解答;②.
1
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/13 8:0:9组卷:313引用:3难度:0.4
相似题
-
1.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=
BD;③BN+DQ=NQ;④12为定值.其中一定成立的是 .AB+BNBM发布:2025/6/24 15:0:1组卷:2074引用:8难度:0.5 -
2.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P沿边AB从点A向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设点P、Q移动的时间为t s.问:
(1)当t为何值时△PBQ的面积等于8cm2?
(2)当t为何值时△DPQ是直角三角形?
(3)是否存在t的值,使△DPQ的面积最小,若存在,求此时t的值及此时的面积;若不存在,请说明理由.发布:2025/6/23 18:0:2组卷:117引用:1难度:0.1 -
3.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P. ①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.1DM+1DN发布:2025/6/23 21:30:2组卷:421引用:6难度:0.5