问题提出

(1)如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC,P为高AE上的动点,过点P作PH⊥AC于H,则PHAP的值为 2222;
问题探究
(2)如图2,在平面直角坐标系中,直线y=-3x+23与x轴、y轴分别交于点 A、B.若点P是直线AB上一个动点,过点P作PH⊥OB于H,求OP+PH的最小值.
问题解决
(3)如图3,在平面直角坐标系中,长方形OABC的OA边在x轴上,OC在y轴上,且B(6,8).点D在OA边上,且OD=2,点E在AB边上,将△ADE沿DE翻折,使得点A恰好落在OC边上的点A′处,那么在折痕DE上是否存在点P使得22EP+A′P最小,若存在,请求最小值,若不存在,请说明理由.
PH
AP
2
2
2
2
3
3
2
2
【考点】一次函数综合题.
【答案】
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/7 0:0:8组卷:2012引用:2难度:0.1
相似题
-
1.如图,直线OC、BC的函数关系式分别为y=x和y=-2x+b,且交点C的横坐标为2,动点P(x,0)在线段OB上移动(0<x<3).
(1)求点C的坐标和b;
(2)若点A(0,1),当x为何值时,AP+CP的值最小;
(3)过点P作直线EF⊥x轴,分别交直线OC、BC于点E、F.
①若EF=3,求点P的坐标.
②设△OBC中位于直线EF左侧部分的面积为s,请写出s与x之间的函数关系式,并写出自变量的取值范围.发布:2025/6/18 2:30:1组卷:960引用:3难度:0.4 -
2.在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)当t=2秒时,四边形OPQB的面积为多少个平方单位?发布:2025/6/17 12:30:1组卷:577引用:46难度:0.1 -
3.如图,在直角坐标系中,点B的坐标为(15,8),若直线y=
x+m恰好将矩形OABC分为面积相等的两部分,则m的值为 .13发布:2025/6/17 10:0:1组卷:229引用:2难度:0.7