综合与实践
综合与实践课上,老师让同学们以“图形的变换”为主题开展数学活动.
(1)操作判断如图1,将矩形纸片ABCD折叠,使AB落在边AD上,点B与点E重合,折痕为AF,即可得到正方形AEFB,沿EF剪开,将正方形AEFB折叠使边AB,AE都落在正方形的对角线AF上,折痕为AG,AH,连接GH,如图2.根据以上操作,则∠GAH=4545°.
(2)迁移探究
将图2中的∠GAH绕点A按顺时针旋转,使它的两边分别交边BF,FE于点I,J,连接IJ,
如图3.探究线段BI,IJ,EJ之间的数量关系,并说明理由.
(3)拓展应用
连接正方形对角线BE,若图3中的∠IAJ的边AI,AJ分别交对角线BE于点K,R,将正方形纸片沿对角线BE剪开,如图4,若BK=2,ER=4,请直接写出KR的长.
【考点】几何变换综合题.
【答案】45
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/15 12:0:2组卷:233引用:10难度:0.4
相似题
-
1.【发现奥秘】
(1)如图1,在等边三角形ABC中,AB=2,点E是△ABC内一点,连接AE,EC,BE,分别将AC,EC绕点C顺时针旋转60°得到DC,FC,连接AD,DF,EF.当B,E,F,D四个点满足 时,BE+AE+CE的值最小,最小值为 .
【解法探索】
(2)如图2,在△ABC中,∠ACB=90°,AC=BC,点P是△ABC内一点,连接PA,PB,PC,请求出当PA+PB+PC的值最小时∠BCP的度数,并直接写出此时PA:PB:PC的值.(提示:分别将PC,AC绕点C顺时针旋转60°得到DC,EC,连接PD,DE,AE)
【拓展应用】
(3)在△ABC中,∠ACB=90°,∠BAC=30°,BC=2,点P是△ABC内一点,连接PA,PB,PC,直接写出当PA+PB+PC的值最小时,PA:PB:PC的值.发布:2025/5/26 0:30:1组卷:232引用:1难度:0.4 -
2.下面是某数学兴趣小组对一个数学问题作的探究活动:
问题:
如图1,已知,∠MON=60°,点A在边OM上,点P是边ON上一动点,以线段AP为斜边作Rt△ACP,AC=PC,∠ACP=90°(C和O在AP的两侧),连接OC,将线段OC绕C逆时针旋转90°至BC,连接OB.
A.SSS
B.SAS
C.AAS
D.ASA
(2)如图2,小颖同学作BD⊥ON于D,她认为OA与BD存在某种数量关系,那么OA与BD是否有数量关系?如果有数量关系,请你写出OA与BD的数量关系并说明理由;
(3)如图1,小华说,当OA=2,当△AOP是直角三角形时,可求出OB2的值,请你直接写出OB2的值.发布:2025/5/25 22:30:2组卷:142引用:2难度:0.1 -
3.如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.
(1)证明:△AHB≌△AGC;
(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AG=QG,AB=AC=4,求EH的长度.发布:2025/5/26 1:0:1组卷:181引用:1难度:0.3