已知函数f(x)=32sin(ωx+π6)+12-cos2(ωx2+π12)(ω>0)的相邻两对称轴间的距离为π.
(1)求ω的值;
(2)证明:f(3x)=3f(x)-4f3(x);
(3)令g(x)=f(4x-π3),记方程g(x)=m,m∈(0,32)在x∈[π6,4π3]上的根从小到大依次为x1,x2,…,xn,若t=x1+2x2+2x3+⋯+2xn-1+xn,试求t的值.
f
(
x
)
=
3
2
sin
(
ωx
+
π
6
)
+
1
2
-
co
s
2
(
ωx
2
+
π
12
)
(
ω
>
0
)
g
(
x
)
=
f
(
4
x
-
π
3
)
m
∈
(
0
,
3
2
)
x
∈
[
π
6
,
4
π
3
]
【考点】三角函数中的恒等变换应用.
【答案】(1)ω=1;
(2)见解析;
(3)t=.
(2)见解析;
(3)t=
11
π
12
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/6 8:0:9组卷:19引用:1难度:0.6
相似题
-
1.已知函数f(x)=cos2ωx+2sinωxcosωx-sin2ωx(0<ω<4),且_____.
从以下①②③三个条件中任选一个,补充在上面条件中,并回答问题:①过点函数f(x)图象与直线(π8,2);②的两个相邻交点之间的距离为π;③函数f(x)图象中相邻的两条对称轴之间的距离为y+2=0.π2
(1)求函数f(x)的单调递增区间;
(2)设函数,则是否存在实数m,使得对于任意g(x)=2cos(2x-π3),存在x1∈[0,π2],m=g(x2)-f(x1)成立?若存在,求实数m的取值范围;若不存在,请说明理由.x2∈[0,π2]发布:2024/12/29 8:0:12组卷:43引用:4难度:0.4 -
2.已知向量
=(msin2x+2,cosx),3=(1,2cosx),设函数f(x)=n.m•n
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,若f(A)=4,b=1,△ABC的面积为,求实数a的值.32发布:2024/12/29 10:30:1组卷:7引用:3难度:0.5 -
3.已知在△ABC中,sinA+cosA=
1725
①求sinAcosA
②判断△ABC是锐角三角形还是钝角三角形
③求tanA的值.发布:2024/12/29 7:0:1组卷:67引用:3难度:0.5