某闯关游戏由两道关卡组成,现有n名选手依次闯关,每位选手成功闯过第一关和第二关的概率均为12,两道关卡能否过关相互独立,每位选手的闯关过程相互独立,具体规则如下:
①每位选手先闯第一关,第一关闯关成功才有机会闯第二关.
②闯关选手依次挑战.第一位闯关选手开始第一轮挑战.若第i(i=1,2,3,⋯,n-1)位选手在10分钟内未闯过第一关,则认为第i轮闯关失败,由第i+1位选手继续挑战.
③若第i(i=1,2,3,⋯,n-1)位选手在10分钟内闯过第一关,则该选手可继续闯第二关.若该选手在10分钟内未闯过第二关,则也认为第i轮闯关失败,由第i+1位选手继续挑战.
④闯关进行到第n轮,则不管第n位选手闯过第几关,下一轮都不再安排选手闯关.
令随机变量Xn表示n名挑战者在第Xn(Xn=1,2,3,⋯,n)轮结束闯关.
(1)求随机变量X4的分布列;
(2)若把闯关规则①去掉,换成规则⑤:闯关的选手先闯第一关,若有选手在10分钟内闯过第一关,以后闯关的选手不再闯第一关,直接从第二关开始闯关.
令随机变量Yn表示n名挑战者在第Yn(Yn=1,2,3,⋯,n)轮结束闯关.
(ⅰ)求随机变量Yn(i∈N*,n⩾2)的分布列
(ⅱ)证明E(Y2)<E(Y3)<E(Y4)<E(Y5)<⋯<E(Yn)<⋯<3.
1
2
Y
n
(
i
∈
N
*
,
n
⩾
2
)
【答案】(1)分布列见解析;
(2)(i)分布列见解析;(ii)证明见解析.
(2)(i)分布列见解析;(ii)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/1 8:0:9组卷:80引用:4难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:197引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7