如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆C与x轴相切;
(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求MF的值.(或者求BEMF的值)
1
2
BE
MF
【考点】二次函数综合题.
【答案】(1);
(2)证明见解析过程;
(3).
y
=
1
4
x
2
-
x
+
2
(2)证明见解析过程;
(3)
5
-
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/7 8:0:9组卷:129引用:2难度:0.2
相似题
-
1.如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B.求:
(1)点A、B的坐标;
(2)抛物线的函数表达式;
(3)在抛物线对称轴上是否存在点P,使得以A、B、P为顶点的三角形为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.发布:2025/6/20 22:30:2组卷:491引用:4难度:0.5 -
2.在平面直角坐标系中,点A的坐标为(a,b),若点A1的坐标是(a,|a-b|),则称点A1是点A的“关联点”.
(1)点(-1,3)的“关联点”坐标是 ;
(2)点A在函数y=2x-3上,若点A的“关联点”A1与点A重合,求点A的坐标;
(3)点A(a,b)的“关联点”A1是函数y=x2的图象上一点,当0≤a≤2时,求线段AA1长度的最大值.发布:2025/6/21 4:30:1组卷:174引用:2难度:0.1 -
3.(1)在△ABC中,AB=AC=5,BC=8,点P、Q分别在射线CB、AC上(点P不与点C、点B重合),且保持∠APQ=∠ABC.
①若点P在线段CB上(如图),且BP=6,求线段CQ的长;
②若BP=x,CQ=y,求y与x之间的函数关系式,并写出函数的定义域;
(2)正方形ABCD的边长为5(如图),点P、Q分别在直线CB、DC上(点P不与点C、点B重合),且保持∠APQ=90度.当CQ=1时,写出线段BP的长(不需要计算过程,请直接写出结果).发布:2025/6/21 20:0:2组卷:599引用:4难度:0.4