探究题:观察下列各式的变化规律,然后解答下列问题:
11×2=1-12,
12×3=12-13,
13×4=13-14,
14×5=14-15,
…
①计算:若n为正整数,猜想1n(n+1)=1n-1n+11n-1n+1;
②1x+1x(x+1)+1(x+1)(x+2)+……+1(x+2014)(x+2015);
③若|ab-2|+|b-1|=0,求1ab+1(a+1)(b+1)+1(a+2)(b+2)+…+1(a+2002)(b+2002)的值.
1
1
×
2
=
1
-
1
2
1
2
×
3
=
1
2
-
1
3
1
3
×
4
=
1
3
-
1
4
1
4
×
5
=
1
4
-
1
5
1
n
(
n
+
1
)
1
n
1
n
+
1
1
n
1
n
+
1
1
x
+
1
x
(
x
+
1
)
+
1
(
x
+
1
)
(
x
+
2
)
+
1
(
x
+
2014
)
(
x
+
2015
)
1
ab
+
1
(
a
+
1
)
(
b
+
1
)
+
1
(
a
+
2
)
(
b
+
2
)
1
(
a
+
2002
)
(
b
+
2002
)
【答案】-
1
n
1
n
+
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/23 6:0:3组卷:36引用:1难度:0.7