如图,三角形ABC中,点G在线段BC上,且FG⊥BC交AB于点F.点P在直线AB上运动,PD⊥BC交直线BC于D,过点D作DE∥PA,交直线AC于E.
(1)如图1,当点P在线段AB的延长线上时,求证:∠BFG+∠PDE=180°;
(2)如图2,延长ED至点S,延长BD至点T,当点P在线段BA的延长线上时,点H在线段AC上,连接GH,已知∠FGH+∠PDE=180°,
①求证:GH∥DE;
②若∠PDS:∠SDT=2:3,13∠GFA+∠BAC=120°,求∠GHC的度数.
1
3
【考点】平行线的判定与性质.
【答案】(1)见解答;
(2)①见解答;②72°.
(2)①见解答;②72°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/28 8:0:9组卷:93引用:3难度:0.6
相似题
-
1.如图,若∠1=∠2,AB∥CD,问∠E=∠F吗?请说明理由.
发布:2025/6/23 8:30:2组卷:124引用:3难度:0.3 -
2.如图,∠1=∠2,∠3=100°,则∠4=
发布:2025/6/23 9:0:1组卷:523引用:17难度:0.9 -
3.在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)
如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.
证明:
∵AB∥CD,(已知)
∴∠
∵
∴∠EBC=∠ABC,(角的平分线定义)12
同理,∠FCB=
∴∠EBC=∠FCB.(等式性质)
∴BE∥CF.(发布:2025/6/23 7:0:1组卷:340引用:15难度:0.7