对于实数x,[x]表示不小于x的最小整数,例如:[1]=1,[2.5]=3,点P(x,y)为第一象限中的点,将点P分别向上,向下平移[y]个单位得到点P1,P3;将点P分别向左,向右平移[x]个单位得到点P2,P4,我们称菱形P1P2P3P4叫做点P的“伴随菱形”.例如:点(3,32)的伴随菱形是以点(3,72),(0,32),(3,-12),(6,32)构成的菱形.
(1)在图中画出点A(32,1)的伴随菱形,该菱形的面积为44;
(2)若点B(t,1)的伴随菱形与点A(32,1)的伴随菱形恰有3个公共点,求满足条件的t的最小值;
(3)若点C(32,2)与点D(m,n)所对应的伴随菱形面积相同,且点D(m,n)在函数y=kx的图象上,直接写出k的取值范围.

3
2
7
2
3
2
-
1
2
3
2
3
2
3
2
3
2
【考点】一次函数综合题.
【答案】4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/9 8:0:8组卷:639引用:3难度:0.1
相似题
-
1.如图,平面直角坐标系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直线
过A点,且与y轴交于D点.y=-12x+2
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.发布:2024/12/23 19:30:2组卷:1226引用:3难度:0.4 -
2.如图,在梯形ABCD中,AD∥BC,AB=CD,以边BC所在直线为x轴,边BC的中点O为原点建立直角坐标平面,已知点B的坐标为(-4,0),直线AB的解析式为y=2x+m.
(1)求m的值;
(2)求直线CD的解析式;
(3)若点A在第二象限,是否存在梯形ABCD,它的面积为30?若存在,请求出点A的坐标;若不存在,请说明理由.发布:2025/1/21 8:0:1组卷:5引用:0难度:0.3 -
3.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式;
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.52发布:2024/12/23 17:30:9组卷:4639引用:6难度:0.3