已知函数h(x)=x2-4x+mx-2(x∈R,且x>2),函数y=t(x)的图象经过点(4,3),且y=t(x)与y=h(x)的图象关于直线y=x对称,将函数y=h(x)的图象向左平移2个单位后得到函数y=f(x)的图象.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)=f(x)+ax,g(x)在区间(0,3]上的值不小于8,求实数a的取值范围.
(III)若函数f(x)满足:对任意的x1,x2∈(a,b)(其中x1≠x2),有f(x1)+f(x2)2>f(x1+x22),称函数f(x)在(a,b)的图象是“下凸的”.判断此题中的函数f(x)图象在(0,+∞)是否是“下凸的”?如果是,给出证明;如果不是,说明理由.
h
(
x
)
=
x
2
-
4
x
+
m
x
-
2
(
x
∈
R
g
(
x
)
=
f
(
x
)
+
a
x
,
g
(
x
)
f
(
x
1
)
+
f
(
x
2
)
2
>
f
(
x
1
+
x
2
2
)
【考点】奇偶性与单调性的综合.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:36引用:1难度:0.5