甲、乙两人组成“梦想队”参加“极速猜歌”比赛,比赛共两轮,每轮比赛从队伍中选出一人参与,参与比赛的选手从曲库中随机抽取一首进行猜歌名.若每轮比赛中甲、乙参与比赛的概率相同.甲首次参与猜歌名,猜对的概率为23;甲在第一次猜对歌名的条件下,第二次也猜对的概率为34;甲在第一次猜错歌名的条件下,第二次猜对的概率为12.乙首次参与猜歌名,猜对的概率为12;乙在第一次猜对歌名的条件下,第二次也猜对的概率为23;乙在第一次猜错歌名的条件下,第二次猜对的概率为12.甲、乙互不影响.
(1)求在两轮比赛中,甲只参与一轮比赛的概率;
(2)记“梦想队”一共猜对了X首歌名,求X的分布列及期望.
2
3
3
4
1
2
1
2
2
3
1
2
【答案】(1)概率为;
(2)分布列见解析,期望为.
1
2
(2)分布列见解析,期望为
19
16
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/22 8:0:9组卷:88引用:3难度:0.6
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:201引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7