对于函数f(x),g(x),如果它们的图象有公共点P,且在点P处的切线相同,则称函数f(x)和g(x)在点P处相切,称点P为这两个函数的切点.设函数f(x)=ax2-bx(a≠0),g(x)=lnx.
(Ⅰ)当a=-1,b=0时,判断函数f(x)和g(x)是否相切?并说明理由;
(Ⅱ)已知a=b,a>0,且函数f(x)和g(x)相切,求切点P的坐标;
(Ⅲ)设a>0,点P的坐标为(1e,-1),问是否存在符合条件的函数f(x)和g(x),使得它们在点P处相切?若点P的坐标为(e2,2)呢?(结论不要求证明)
(
1
e
,-
1
)
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/23 1:0:2组卷:89引用:3难度:0.1