某学校共有1000名学生参加知识竞赛,其中男生400人,为了解该校学生在知识竞赛中的情况,采用分层随机抽样的方法抽取了100名学生进行调查,分数分布在450~950分之间,根据调查的结果绘制的学生分数频率分布直方图如图所示.将分数不低于750分的学生称为“高分选手”.
(1)求a的值;
(2)现采用分层随机抽样的方式从分数落在[550,650)、[750,850)内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高分选手”的学生人数为随机变量X,求X的分布列及数学期望;
(3)若样本中属于“高分选手”的女生有10人,试完成下列2×2列联表,依据α=0.025的独立性检验,能否认为该校学生属于“高分选手”与“性别”有关联?
属于“高分选手” | 不属于“高分选手” | 合计 | |
男生 | |||
女生 | |||
合计 |
χ
2
=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
α | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
xα | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【考点】离散型随机变量的均值(数学期望).
【答案】本题考查频率分布直方图的应用,求解随机变量的分布列和数学期望,会利用独立性检验求解判断,属中档题.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/18 8:0:8组卷:21引用:3难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:197引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7