某商场举行有奖促销活动,凡7月7日当天消费每超过400元(含400元),均可抽奖一次,抽奖箱里有6个形状、大小、质地完全相同的小球,其中红球有3个,白球有3个,抽奖方案设置两种,顾客自行选择其中的一种方案.
方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折;若摸出1个红球,则打8折;若没摸出红球,则不打折;
方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减80元.
(1)若小方、小红均分别消费了400元,且均选择抽奖方案一,试求他们其中恰有一人享受6折优惠的概率;
(2)若小勇消费恰好满500元,试比较说明小勇选择哪种方案更划算.
【考点】离散型随机变量的均值(数学期望).
【答案】(1);
(2)选择方案一更划算.
8
25
(2)选择方案一更划算.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/24 8:0:9组卷:18引用:2难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7