拉格朗日中值定理是微分学的基本定理之一,定理内容如下:如果函数f(x)在闭区间[a,b]上的图象连续不间断,在开区间(a,b)内的导数为f'(x),那么在区间(a,b)内至少存在一点c,使得f(b)-f(a)=f'(c)(b-a)成立,其中c叫做f(x)在[a,b]上的“拉格朗日中值点”.根据这个定理,可得函数f(x)=(x-2)lnx在[1,2]上的“拉格朗日中值点”的个数为( )
【考点】基本初等函数的导数.
【答案】B
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/19 8:0:9组卷:364引用:13难度:0.7