已知一动圆Q与圆M:(x+1)2+y2=1外切,同时与圆N:(x-1)2+y2=25内切,圆心Q的轨迹为曲线C.
(1)求曲线C的方程;
(2)过曲线C上点P作该曲线的一条切线l与直线x=1相交于点A,与直线x=9相交于点B,证明PN⊥NB并判断|AN||BN|是否为定值?若是,求出该值;若不是,请说明理由.
|
AN
|
|
BN
|
【考点】轨迹方程.
【答案】(1);
(2)证明见解析,=.
x
2
9
+
y
2
8
=
1
(2)证明见解析,
|
AN
|
|
BN
|
1
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/5 19:0:8组卷:91引用:4难度:0.5
相似题
-
1.点P为△ABC所在平面内的动点,满足
=t(AP),t∈(0,+∞),则点P的轨迹通过△ABC的( )AB|AB|cosB+AC|AC|cosC发布:2024/12/29 6:30:1组卷:106引用:3难度:0.7 -
2.已知两个定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|.
(1)求点P的轨迹方程并说明该轨迹是什么图形;
(2)若直线l:y=kx+1分别与点P的轨迹和圆(x+2)2+(y-4)2=4都有公共点,求实数k的取值范围.发布:2024/12/29 10:30:1组卷:42引用:3难度:0.5 -
3.已知四棱锥P-ABCD的底面ABCD为正方形,PD⊥底面ABCD,且PD=AD=4,点E为BC的中点.四棱锥P-ABCD的所有顶点都在同一个球面上,点M是该球面上的一动点,且PM⊥AE,则点M的轨迹的长度为( )
发布:2024/12/29 8:0:12组卷:14引用:1难度:0.6