【阅读理解】
我们经常过某个点作已知直线的平行线,以便利用平行线的性质来解决问题.
例如:如图1,AB∥CD,点E、F分别在直线AB、CD上,点P在直线AB、CD之间,设∠AEP=∠α,∠CFP=∠β,求证:∠P=∠α+∠β.
证明:如图2,过点P作PQ∥AB,
∴∠EPQ=∠AEP=∠α,
∵PQ∥AB,AB∥CD,
∴PQ∥CD,
∴∠FPQ=∠CFP=∠β,
∴∠EPF=∠EPQ+∠FPQ=∠α+∠β.
即∠P=∠α+∠β.
可以运用以上结论解答下列问题:
【类比应用】
(1)如图3,已知AB∥CD,已知∠D=40°,∠GAB=60°,求∠P的度数;
(2)如图4,已知AB∥CD,点E在直线CD上,点P在直线AB上方,连接PA、PE.设∠A=∠α、∠CEP=∠β,则∠α、∠β、∠P之间有何数量关系?请说明理由;
【拓展应用】
(3)如图5,已知AB∥CD,点E在直线CD上,点P在直线AB上方,连接PA、PE,∠PED的角平分线与∠PAB的角平分线所在直线交于点Q,求12∠P+∠Q的度数.
1
2
∠
P
+
∠
Q
【答案】(1)∠P=100°;(2)∠P=∠α+∠β-180°,理由见解析;(3)180°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/5 8:0:9组卷:388引用:4难度:0.6