“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为( )
【考点】勾股定理的证明.
【答案】B
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/26 8:0:9组卷:612引用:6难度:0.5
相似题
-
1.我国是最早了解勾股定理的国家之一,东汉末年数学家刘徽在为《九章算术》作注中依据割补术而创造了勾股定理的无字证明“青朱出入图”,移动几个图形就直观地证明了勾股定理,如图,若a=3,b=4,则△CFG的面积为 .
发布:2025/5/26 4:0:1组卷:110引用:1难度:0.6 -
2.如图是我国汉代数学家赵爽在注解《周辞算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形EFGH拼成的一个大正方形ABCD.连结CE,若CE=AD,则tan∠BCE的值为( )
发布:2025/5/26 6:30:2组卷:370引用:1难度:0.3 -
3.如图(1)是我国古代数学家赵爽用来证明勾股定理的弦图示意图,图(2)中,在线段AE和CG上分别取点P和点Q,使AP=CQ,连接PD、PB、QD和QB,则构成了一个“压扁”的弦图.“压扁”的弦图(四边形PBQD)中,4个直角三角形的面积(如图(2)中的阴影部分)依次记作S1,S2,S3,S4,连接PQ并延长交BC于点M.若AE=3EF=3,S1=S3=S2+S4,则CM的长为( )
发布:2025/5/26 9:30:1组卷:312引用:2难度:0.4