记min{a,b}=a,a≤b b,a>b
,设f(x)=min{x2-2tx+1,-x2+4tx+1}(t>0)
(1)若t=1,求f(x)的单调递增区间;
(2)若对任意的x∈[0,3],不等式|f(x)-12|≤32成立,求实数t的取值范围.
min
{
a
,
b
}
=
a , a ≤ b |
b , a > b |
|
f
(
x
)
-
1
2
|
≤
3
2
【考点】函数的最值.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:64引用:1难度:0.6
相似题
-
1.如图,在△ABC中,AH为BC边上的高线.P为三角形内一点,由P向三角形三边作垂线,垂足分别为D,E,F,已知|AH|,|AC|,|BC|,|AB|依次构成公差为1的等差数列.
(Ⅰ)求△ABC的面积;
(Ⅱ)求T=|PD|2+|PE|2+|PF|2的最小值.发布:2025/1/24 8:0:2组卷:58引用:1难度:0.9 -
2.已知函数f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定义域内存在最大值,且最大值为2,g(x)=
,若对任意x1∈[-1,m•2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),则实数m的取值可以是( )12发布:2024/12/29 13:30:1组卷:135引用:3难度:0.5 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的两根,且x1<x2,则
的最大值是 .ax1x22发布:2024/12/29 13:30:1组卷:125引用:4难度:0.5