试卷征集
加入会员
操作视频

已知圆C过点P(
2
2
2
2
),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)求圆C的方程;
(2)设Q为圆心C上的一个动点,求
CQ
MQ
的最小值;
(3)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

【答案】(1)x2+y2=1.
(2)-2
2
+1;
(3)证明:过点P作两条相异直线分别与圆C相交于A,B,
且直线PA和直线PB的倾斜角互补,O为坐标原点,
则得直线OP和AB平行,
理由如下:由题意知,直线PA和直线PB的斜率存在,且互为相反数,
故可设PA:y-
2
2
=k(x-
2
2
),PB:y-
2
2
=-k(x-
2
2
).
由PA与圆方程联立,得(1+k2)x2+
2
k(1-k)x+
1
2
(1-k)2-1=0,
因为P的横坐标x=
2
2
一定是该方程的解,故可得xA=
2
2
k
2
-
2
k
-
1
1
+
k
2

同理,所以xB=
2
2
k
2
+
2
k
-
1
1
+
k
2

由于AB的斜率kAB=
y
B
-
y
A
x
B
-
x
A
=
2
k
-
k
x
B
+
x
A
x
B
-
x
A
=1=kOP (OP的斜率),
所以,直线AB和OP一定平行.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:121引用:2难度:0.3
相似题
  • 1.倾斜角为
    π
    4
    的直线l经过抛物线y2=4x的焦点F,与抛物线相交于A,B两点,则弦AB的长为

    发布:2024/12/29 9:0:1组卷:218引用:4难度:0.6
  • 2.抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,点A是抛物线的准线与坐标轴的交点,则
    |
    PA
    |
    |
    PF
    |
    的最大值是(  )

    发布:2024/12/31 22:0:3组卷:203引用:5难度:0.6
  • 3.抛物线2y2=x的焦点坐标是

    发布:2024/12/29 4:30:2组卷:12引用:5难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正