如图①,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C.点B的坐标为(4,0),点C的坐标为(0,4),直线l经过B、C两点.
(1)b=33,c=44.
(2)点P为y轴上的动点,过点P且平行于x轴的直线m,分别交该二次函数的图象于点M、N(点M在点N的左边),交直线l于点R(如图②).
①当点R为线段MN的中点时,求N点的坐标.
②设M、N、R的横坐标分别x1,x2,x3,点P的纵坐标为t.若(x1-x3)(x2-x3)>0,则t的取值范围是 4<t<254或t<04<t<254或t<0.
(3)若将该二次函数的图象进行适当平移,当平移后的图象与直线l最多只有一个公共点时,请直接写出图象平移的最短距离,并求出平移后的二次函数图象的顶点坐标.

25
4
25
4
【考点】二次函数综合题.
【答案】3;4;4<t<或t<0
25
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/30 8:0:9组卷:173引用:1难度:0.1
相似题
-
1.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.发布:2025/6/8 14:30:2组卷:237引用:45难度:0.1 -
2.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-2)、(1,-2),点B的横坐标的最大值为3,则点A的横坐标的最小值为( )
发布:2025/6/8 8:0:6组卷:4103引用:19难度:0.7 -
3.已知函数y=
,记该函数图象为G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)当m=2时,
①已知M(4,n)在该函数图象上,求n的值;
②当0≤x≤2时,求函数G的最大值.
(2)当m>0时,作直线x=m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m的值;12
(3)当m≤3时,设图象与x轴交于点A,与y轴交于点B,过点B作BC⊥BA交直线x=m于点C,设点A的横坐标为a,C点的纵坐标为c,若a=-3c,求m的值.发布:2025/6/8 14:30:2组卷:3081引用:7难度:0.1