甲、乙两个袋子里各有1个白球和1个黑球,每次独立地从两个袋子中随机取出1个球相互交换后放回袋中,若第n次交换后,甲袋中两个球颜色相同,记Xn=1,否则,Xn=0.
(1)求X1=0 的概率;
(2)求Xn=1 的概率;
(3)记Y=n∑i=1Xi,求E(Y).
n
∑
i
=
1
【考点】离散型随机变量的均值(数学期望).
【答案】(1).
(2).
(3).
1
2
(2)
1
3
+
1
6
(
-
1
2
)
n
-
1
(3)
n
3
+
1
9
[
1
-
(
-
1
2
)
n
]
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/17 2:0:1组卷:38引用:1难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7