我们给出如下定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图1,∠B=∠C,则四边形ABCD为等邻角四边形.
(1)定义理解:以下平面图形中,一定是等邻角四边形的是 ②④②④;
①平行四边形;②矩形;③菱形;④正方形.
(2)如图2,在四边形ABCD中,AB,CD的垂直平分线恰好交于BC边上一点P,连接AC,BD,且AC=BD,求证:四边形ABCD为等邻角四边形;
(3)如图3,在等邻角四边形ABCD中,∠B=∠BCD,CE⊥AE,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,猜想PM,PN,CE之间的数量关系?并请说明理由.

【考点】四边形综合题.
【答案】②④
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/16 8:0:10组卷:74引用:2难度:0.3
相似题
-
1.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2-7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED-DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.
(1)求点D的坐标;
(2)求S关于t的函数关系式,并写出自变量的取值范围;
(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.发布:2025/5/23 3:30:1组卷:862引用:5难度:0.4 -
2.已知:菱形ABCD和菱形A′B′C′D′,∠BAD=∠B′A′D′,起始位置点A在边A′B′上,点B在A′B′所在直线上,点B在点A的右侧,点B′在点A′的右侧,连接AC和A′C′,将菱形ABCD以A为旋转中心逆时针旋转α角(0°<α<180°).
(1)如图1,若点A与A′重合,且∠BAD=∠B′A′D′=90°,求证:BB′=DD′.
(2)若点A与A′不重合,M是A′C′上一点,当MA′=MA时,连接BM和A′C,BM和A′C所在直线相交于点P.
①如图2,当∠BAD=∠B′A′D′=90°时,请猜想线段BM和线段A′C的数量关系及∠BPC的度数.
②如图3,当∠BAD=∠B′A′D′=60°时,请求出线段BM和线段A′C的数量关系及∠BPC的度数.
③在②的条件下,若点A与A′B′的中点重合,A′B′=4,AB=2,在整个旋转过程中,当点P与点M重合时,请直接写出线段BM的长.发布:2025/5/23 3:30:1组卷:1720引用:3难度:0.1 -
3.【推理】
如图1,在边长为10的正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G,BE与CG交于点M.
(1)求证:CE=DG.
【运用】
(2)如图2,在【推理】条件下,延长BF交AD于点H.若CE=6,求线段DH的长.
【拓展】
(3)如图3,在【推理】条件下,连结AM.则线段AM的最小值为 .发布:2025/5/23 4:0:1组卷:423引用:5难度:0.4