试卷征集
加入会员
操作视频

在平面直角坐标系xOy中,关于x的二次函数y=x2-4ax+b与y轴相交于点(0,-5).
(1)当抛物线的图象经过点(1,-8)时,求该抛物线的表达式;
(2)求这个二次函数的对称轴(用含a的式子表示);
(3)若抛物线上存在两点A(x1,y1)和B(x2,y2),其中x1-y1=0,x2+y2=0.当x1<0,x2>0时,总有x1+x2>0,求a的取值范围.

【考点】二次函数综合题
【答案】(1)y=x2-4x-5;
(2)x=2a;
(3)a>0.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/8 9:0:9组卷:171引用:1难度:0.4
相似题
  • 1.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=
    1
    2
    x2-
    3
    2
    x-2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.
    (1)若抛物线L2经过点(2,-12),求L2对应的函数表达式;
    (2)当BP-CP的值最大时,求点P的坐标;
    (3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.

    发布:2025/5/26 11:30:1组卷:3535引用:7难度:0.1
  • 2.已知关于x的抛物线的解析式为y=x2-2ax+a2+2a+1.
    (1)当a=1时,求抛物线的对称轴和顶点坐标;
    (2)若抛物线与直线x=3交于点A,求点A到x轴的距离最小值;
    (3)证明:不论a取何值时,抛物线的顶点都在直线y=2x+1上;
    (4)直线y=2x+1与该抛物线相交,求抛物线在这条直线上所截线段的长度.

    发布:2025/5/26 11:30:1组卷:300引用:1难度:0.3
  • 3.在平面直角坐标系中,已知抛物线
    y
    =
    1
    a
    x
    2
    -
    2
    x
    -
    1
    (a为常数,且a≠0)经过点A(2,m)、B(2a,n),设此抛物线在A和B之间(包括A、B两点)的部分为图象G.
    (1)当a=2时,抛物线的顶点坐标为

    (2)m=
    ;n=

    (3)当此抛物线的顶点在图象G上时.
    ①直接写出a的取值范围.
    ②当图象G对应函数值的最小值为-6时,求a的值以及此时图象G最高点的坐标.
    (4)设点P(2a,-3-2a),以PB为边作正方形PBMN,其中MN和y轴在PB的同侧,若图象G在正方形PBMN内部的图象中,y随x的增大而增大或y随x的增大而减小时,直接写出a的取值范围.

    发布:2025/5/26 11:30:1组卷:187引用:2难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正