试卷征集
加入会员
操作视频

某校积极开展社团活动,在一次社团活动过程中,一个数学兴趣小组发现《九章算术》中提到了“刍薨”这个五面体,于是他们仿照该模型设计了一道数学探究题,如图1,E、F、G分别是边长为4的正方形的三边AB、CD、AD的中点,先沿着虚线段FG将等腰直角三角形FDG裁掉,再将剩下的五边形ABCFG沿着线段EF折起,连接AB、CG就得到了一个“刍甍”(如图2).

(1)若O是四边形EBCF对角线的交点,求证:AO∥平面GCF;
(2)若二面角A-EF-B的大小为
2
3
π
,求平面OAB与平面ABE夹角的余弦值.

【答案】(1)AO∥平面GCF.
(2)
17
17
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/5 8:0:8组卷:392引用:11难度:0.6
相似题
  • 1.如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
    (Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
    (Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足
    DQ
    =
    1
    2
    CP
    .记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E-l-C的大小为β.求证:sinθ=sinαsinβ.

    发布:2025/1/20 8:0:1组卷:907引用:12难度:0.1
  • 2.如图,四边形ABCD为梯形,四边形CDEF为矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
    1
    2
    CD,M为AE的中点.
    (1)证明:AC∥平面MDF;
    (2)求平面MDF与平面BCF的夹角的大小.

    发布:2025/1/2 8:0:1组卷:141引用:1难度:0.6
  • 3.如图,AB是圆O的直径,PA垂直于圆所在的平面,C是圆周上的点.
    (1)求证:平面PAC⊥平面PBC;
    (2)若AB=2
    2
    ,AC=2,PA=2,求二面角C-PB-A的度数.

    发布:2025/1/28 8:0:2组卷:33引用:1难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正