某校积极开展社团活动,在一次社团活动过程中,一个数学兴趣小组发现《九章算术》中提到了“刍薨”这个五面体,于是他们仿照该模型设计了一道数学探究题,如图1,E、F、G分别是边长为4的正方形的三边AB、CD、AD的中点,先沿着虚线段FG将等腰直角三角形FDG裁掉,再将剩下的五边形ABCFG沿着线段EF折起,连接AB、CG就得到了一个“刍甍”(如图2).

(1)若O是四边形EBCF对角线的交点,求证:AO∥平面GCF;
(2)若二面角A-EF-B的大小为23π,求平面OAB与平面ABE夹角的余弦值.
2
3
π
【考点】二面角的平面角及求法;直线与平面平行.
【答案】(1)AO∥平面GCF.
(2).
(2)
17
17
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/5 8:0:8组卷:392引用:11难度:0.6
相似题
-
1.如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
(Ⅰ)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E-l-C的大小为β.求证:sinθ=sinαsinβ.DQ=12CP发布:2025/1/20 8:0:1组卷:907引用:12难度:0.1 -
2.如图,四边形ABCD为梯形,四边形CDEF为矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
CD,M为AE的中点.12
(1)证明:AC∥平面MDF;
(2)求平面MDF与平面BCF的夹角的大小.发布:2025/1/2 8:0:1组卷:141引用:1难度:0.6 -
3.如图,AB是圆O的直径,PA垂直于圆所在的平面,C是圆周上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=2,PA=2,求二面角C-PB-A的度数.2发布:2025/1/28 8:0:2组卷:33引用:1难度:0.5