阅读下面的情景对话,然后解答问题:
老师:我们将奇异三角形定义为两边平方和等于第三边平方的2倍的三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形是否存在奇异三角形呢?
【感知】
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,请判断小红提出的命题是否正确,并填空 正确正确(填“正确”或“不正确”);
(2)若某三角形的三边长分别是3、11、7,则△ABC是奇异三角形吗?是是(填“是”或“不是”);
【思考】
(1)若Rt△ABC是奇异三角形,且其两边长分别为2、23,则第三边的边长为 2222;且此直角三角形的三边之比为 1:2:31:2:3(请按从小到大排列);
(2)如图1,在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
【运用】如图2,在Rt△ABC中,∠ACB=90°,以AB为斜边作等腰直角△ABD,点E是AC下方的一点,且满足AE=AD,CE=CB.
(1)求证:△ACE是奇异三角形;
(2)当△ACE是直角三角形时,记△ABC的面积为S1,四边形ACBD的面积为S2,则S1S2=23-3.23-3..
11
7
2
3
2
2
2
3
2
3
S
1
S
2
3
3
【考点】四边形综合题.
【答案】正确;是;2;1::;2-3.
2
2
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/11 11:0:2组卷:343引用:2难度:0.4
相似题
-
1.如图,在菱形ABCD中,AB=10,sinB=
,点E从点B出发沿折线B-C-D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.35
(1)如图1,点G在AC上.求证:FA=FG.
(2)若EF=FG,当EF过AC中点时,求AG的长.
(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?发布:2025/1/28 8:0:2组卷:2055引用:3难度:0.1 -
2.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.
(1)求证:四边形ABDE是平行四边形;
(2)求四边形ABDE的周长和面积;
(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.发布:2025/1/28 8:0:2组卷:577引用:1难度:0.2 -
3.如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=
,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.55
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.发布:2025/1/28 8:0:2组卷:255引用:1难度:0.1