已知:平面直角坐标系中,A(0,23),B(-2,0),C(2,0),在x轴正半轴有一动点P(点P在C的右侧),连接AB,AC,AP,在y轴负半轴取点E,使PA=PE,连接BE,PE,设PC=t.
(1)如图1,当t=1时,求直线PA的解析式.
(2)如图2,连接BE,当S△ABE:S△ACP=4:3时,求t的值.
(3)如图3,延长AB,PE交于点D,延长AC交DP于点G,在第四象限有一点F,连接PF,当∠APF+2∠D=180°,GD=PF,AD=t时,求点F坐标.
A
(
0
,
2
3
)
【考点】一次函数综合题.
【答案】(1)直线PA的解析式为y=-x+2;
(2)t=3;
(3)F(4+4,-2-2).
2
3
3
3
(2)t=3;
(3)F(4+4
2
6
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/17 11:0:10组卷:178引用:1难度:0.1
相似题
-
1.如图,平面直角坐标系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直线
过A点,且与y轴交于D点.y=-12x+2
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.发布:2024/12/23 19:30:2组卷:1226引用:3难度:0.4 -
2.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式;
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.52发布:2024/12/23 17:30:9组卷:4643引用:6难度:0.3 -
3.如图,在梯形ABCD中,AD∥BC,AB=CD,以边BC所在直线为x轴,边BC的中点O为原点建立直角坐标平面,已知点B的坐标为(-4,0),直线AB的解析式为y=2x+m.
(1)求m的值;
(2)求直线CD的解析式;
(3)若点A在第二象限,是否存在梯形ABCD,它的面积为30?若存在,请求出点A的坐标;若不存在,请说明理由.发布:2025/1/21 8:0:1组卷:5引用:0难度:0.3