2021年11月4日,第四届中国国际进口博览会在上海开幕,共计2900多家参展商参展,420多项新产品,新技术,新服务在本届进博会上亮相.某投资公司现从中选出20种新产品进行投资.为给下一年度投资提供决策依据,需了解年研发经费对年销售额的影响,该公司甲,乙两部门分别从这20种新产品中随机地选取10种产品,每种产品被甲,乙两部门是否选中相互独立.
(1)求20种新产品中产品A被甲部门或乙部门选中的概率;
(2)甲部门对选取的10种产品的年研发经费xi(单位:万元)和年销售额yi(i=1,2,…,10)(单位:十万元)数据作了初步处理,得到下面的散点图及一些统计量的值.
10 ∑ i = 1 |
10 ∑ i = 1 |
10 ∑ i = 1 |
10 ∑ i = 1 |
10 ∑ i = 1 |
65 | 75 | 205 | 8773 | 2016 |
̂
y
=
̂
b
(
x
-
3
)
2
+
̂
a
̂
a
,
̂
b
(3)甲,乙两部门同时选中了新产品A,现用掷骰子的方式确定投资金额.若每次掷骰子点数大于2,则甲部门增加投资1万元,乙部门不增加投资;若点数小于3,则乙部门增加投资2万元,甲部门不增加投资,求两部门投资资金总和恰好为100万元的概率.
附:对于一组数据(υ1,u1),(υ2,u2),…,(υn,un),其回归直线u=α+βυ的斜率和截距的最小二乘估计分别为
ˆ
β
=
n
∑
i
=
1
(
υ
i
-
υ
)
(
u
i
-
u
)
n
∑
i
=
1
(
υ
i
-
υ
)
2
,
ˆ
α
=
u
-
̂
b
υ
,
2016
-
205
×
7
.
5
8773
-
205
×
20
.
5
=
29
277
2016
-
65
×
7
.
5
8773
-
65
×
6
.
5
=
1019
5567
【答案】(1),(2),5.4,(3).
3
4
̂
b
=
29
277
̂
a
≈
3
4
+
1
4
×
(
1
3
)
100
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/29 0:0:8组卷:542引用:2难度:0.3
相似题
-
1.某科研机构为了了解气温对蘑菇产量的影响,随机抽取了某蘑菇种植大棚12月份中5天的日产量y(单位:kg)与该地当日的平均气温x(单位:℃)的数据,得到如图散点图:
其中A(3,2),B(5,10),C(8,11),D(9,13),E(10,14).
(1)求出y关于x的线性回归方程;
(2)若该地12月份某天的平均气温为6℃,用(1)中所求的回归方程预测该蘑菇种植大棚当日的产量.
附:线性回归直线方程中,̂y=̂bx+̂a,̂b=n∑i=1xiyi-nxyn∑i=1x2i-nx2.̂a=y-̂bx发布:2024/12/29 11:30:2组卷:104引用:3难度:0.7 -
2.两个线性相关变量x与y的统计数据如表:
x 9 9.5 10 10.5 11 y 11 10 8 6 5 =̂yx+40,则相应于点(9,11)的残差为 .̂b发布:2024/12/29 12:0:2组卷:115引用:8难度:0.7 -
3.某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图1),以及实验室每天每100颗种子中的发芽数情况(如图2),得到如下资料:
(1)请画出发芽数y与温差x的散点图;
(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;
(3)①求出发芽数y与温差x之间的回归方程(系数精确到0.01);̂y=̂a+̂bx
②若12月7日的昼夜温差为8℃,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.
参考数据:=2051,6∑i=1xi=75,6∑i=1yi=162,6∑i=1xiyi≈4.2,6∑i=1xi2-6x2≈6.5.6∑i=1yi2-6y2
参考公式:
相关系数:r=(当|r|>0.75时,具有较强的相关关系).n∑i=1xiyi-nx•y(n∑i=1xi2-nx2)(n∑i=1yi2-ny2)
回归方程中斜率和截距计算公式:̂y=̂a+̂bx=̂b,n∑i=1xiyi-nx•yn∑i=1xi2-nx2=̂ay-̂b.x发布:2024/12/29 12:0:2组卷:182引用:5难度:0.5
相关试卷