试卷征集
加入会员
操作视频

抛物线y=a(x+4)(x-8)与x轴交于A,B两点,交y轴于点C(0,8).
(1)求抛物线解析式;
(2)如图1,过A的直线AD交y轴于D点,∠ADO=2∠CAD,求直线AD的解析式;
(3)如图2,在(2)的条件下,N是AD延长线上一点,以AN为斜边的直角△AMN,直角边MN交CA于点P,若∠MAP=∠N,
MP
=
5
-
1
,求AM的长度.

【考点】二次函数综合题
【答案】(1):y=-
1
4
x2+x+8;
(2)y=
3
4
x+3;
(3)AM=2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/22 18:0:1组卷:95引用:1难度:0.3
相似题
  • 1.如图,在平面直角坐标系中,抛物线y=ax2+bx-
    3
    与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(1,0),且tan∠OAC=
    3
    3

    (1)求抛物线的解析式;
    (2)如图1,点M为直线AC下方抛物线上一点,过点M作MD∥y轴交AC于点D,求MD+DC的最大值及此时点M的坐标;
    (3)如图2,连接BC,将△BOC绕着点A逆时针旋转60°得到△B'O'C',将抛物线y=ax2+bx-
    3
    沿着射线CB方向平移,使得平移后的新抛物线经过O',H是新抛物线对称轴上一点,在平面直角坐标系中是否存在点P,使以点B',C',H,P为顶点的四边形是以B'C'为边的菱形,若存在,请直接写出点P的坐标;若不存在,请说明理由.

    发布:2025/5/25 17:0:1组卷:435引用:1难度:0.2
  • 2.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(-1,0),B(2,0)两点,与y轴交于点(0,2).
    (1)求此二次函数的表达式;
    (2)点Q在以BC为直径的圆上(点Q与点O,点B,点C均不重合),试探究QO,QB,QC的数量关系,并说明理由.
    (3)E点为该图象在第一象限内的一动点,过点E作直线BC的平行线,交x轴于点F.若点E从点C出发,沿着抛物线运动到点B,则点F经过的路程为

    发布:2025/5/25 17:30:1组卷:290引用:1难度:0.2
  • 3.如图,已知二次函数y=-x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(-1,0),C(2,0),AC=BC.
    (1)求抛物线的解析式;
    (2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE的最大值以及此时E点的坐标;
    (3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由.

    发布:2025/5/25 18:0:1组卷:390引用:1难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正