试卷征集
加入会员
操作视频

如图,在八面体PABCDQ中,四边形ABCD是边长为2的正方形,平面PAD∥平面QBC,二面角P-AB-C与二面角Q-CD-A的大小都是30°,
AP
=
CQ
=
3
,PD⊥AB.
(1)证明:平面PCD∥平面QAB;
(2)设G为△QBC的重心,是否在棱PA上存在点S,使得SG与平面ABCD所成角的正弦值为
30
20
,若存在,求S到平面ABCD的距离,若不存在,说明理由.

【答案】(1)证明见解析;
(2)存在,
3
6
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/10 8:0:9组卷:139引用:6难度:0.5
相似题
  • 1.如图AB是圆O的直径,点C是弧AB上一点,VC垂直圆O所在平面,D,E分别为VA,VC的中点.
    (1)求证:DE⊥VB;
    (2)若VC=CA=6,圆O的半径为5,求点E到平面BCD的距离.

    发布:2025/1/20 8:0:1组卷:9引用:2难度:0.5
  • 2.在矩形ABCD中,AB=2,BC=1,取AB中点E,CD中点F,若沿EF将矩形AEFD折起,使得平面AEF⊥平面EFB,则AE中点Q到平面BFD的距离为

    发布:2025/1/13 8:0:2组卷:10引用:2难度:0.7
  • 3.如图,在菱形ABCD中AC=1,BD=2,将△ACD沿若AC折起,使点D翻折到D'位置,连BD',直线BD'与平面ABC所成的角为22.5°,如图所示,若E为AB中点,过C作平面ABC的垂线l,在直线上取一点F,使EF∥平面AD'C,则CF的长为

    发布:2025/1/28 8:0:2组卷:36引用:1难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正