已知关于x的函数y=f(x),y=g(x)与h(x)=kx+b(k,b∈R)在区间D上恒有f(x)≥h(x)≥g(x).
(1)若f(x)=x2+2x,g(x)=-x2+2x,D=(-∞,+∞),求h(x)的表达式;
(2)若f(x)=x2-x+1,g(x)=klnx,h(x)=kx-k,D=(0,+∞),求k的取值范围;
(3)若f(x)=x4-2x2,g(x)=4x2-8,h(x)=4(t3-t)x-3t4+2t2(0<|t|≤2),D=[m,n]⊂[-2,2],求证:n-m≤7.
2
2
2
7
【考点】利用导数研究函数的单调性;函数与方程的综合运用.
【答案】(1)h(x)=2x.
(2)k∈[0,3].
(3)n-m≤.
(2)k∈[0,3].
(3)n-m≤
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/15 6:0:3组卷:1672引用:6难度:0.1
相似题
-
1.已知函数f(x)=x3-2kx2+x-3在R上不单调,则k的取值范围是 ;
发布:2024/12/29 13:0:1组卷:236引用:3难度:0.8 -
2.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为( )
发布:2024/12/29 13:0:1组卷:265引用:7难度:0.9 -
3.已知函数f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)若函数f(x)有两个极值点x1,x2(x1≠x2),证明:.x1•x2>e2发布:2024/12/29 13:30:1组卷:141引用:2难度:0.2