平面直角坐标系中,抛物线y=-14x2+bx+c与直线KB交于点B(2,0),K(-12,-14),与y轴交于点C.

(1)求抛物线的函数表达式及顶点坐标;
(2)如图1,连接BC,点P是线段BK上方抛物线上的一个动点,过点P作PZ∥x轴交CB于点Z,过点P作PQ∥CB交直线KB于点Q,求655PQ+PZ的最大值及此时点P的坐标;
(3)如图2,在(2)的条件下,将该抛物线向下平移38个单位,向右平移3个单位,使得P点对应点P'.点S是新抛物线对称轴上一点,在平面上否存在一点N,使以P'、S、A、N为顶点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.
1
4
x
2
6
5
5
3
8
【考点】二次函数综合题.
【答案】(1),;
(2)最大值为,;
(3)或.
y
=
-
1
4
x
2
-
3
2
x
+
4
(
-
3
,
25
4
)
(2)
6
5
5
PQ
+
PZ
243
8
P
(
-
7
,
9
4
)
(3)
N
(
-
12
,
949
80
)
(
-
4
,-
15
8
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/20 15:0:2组卷:41引用:2难度:0.5
相似题
-
1.根据以下素材,探索完成任务.
如何设计喷水装置的高度? 素材1 图1为某公园的圆形喷水池,图2是其示意图,O为水池中心,喷头A、B之间的距离为20米,喷射水柱呈抛物线形,水柱距水池中心7m处达到最高,高度为5m.水池中心处有一个圆柱形蓄水池,其底面直径CD为12m,高CF为1.8米. 素材2 如图3,拟在圆柱形蓄水池中心处建一喷水装置OP (OP⊥CD),并从点P向四周喷射与图2中形状相同的抛物线形水柱,且满足以下条件:
①水柱的最高点与点P的高度差为0.8m;
②不能碰到图2中的水柱;
③落水点G,M的间距满足:GM:FM=2:7.问题解决 任务1 确定水柱形状 在图2中以点O为坐标原点,水平方向为x轴建立直角坐标系,并求左边这条抛物线的函数表达式. 任务2 探究落水点位置 在建立的坐标系中,求落水点G的坐标. 任务3 拟定喷水装置的高度 求出喷水装置OP的高度. 发布:2025/5/23 4:30:1组卷:756引用:3难度:0.3 -
2.已知抛物线y=ax2+bx 经过点A(2,0)与点(-1,3).
(1)求抛物线的解析式;
(2)直线y=kx+2与抛物线y=ax2+bx交于点M,N(点M,点N分别在第一、二象限).
①如图1,连接OM,当∠OMN=45°时,求k的值;
②如图2,直线AN交y轴于点E,直线AM交y轴于点F,当时,求k的值.EF=57发布:2025/5/23 4:30:1组卷:298引用:1难度:0.2 -
3.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,结合图象分析如下结论:①abc>0;②b+3a<0;③当x>0时,y随x的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=
.其中正确的有( )66发布:2025/5/23 5:0:2组卷:3755引用:22难度:0.2