配方法是数学中重要的一种思想方法.它是指将一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.我们定义:一个整数能表示成a2+b2(a、b是整数)的形式,则称这个数为“完美数”,例如,5是“完美数”.理由:因为5=22+12.所以5是“完美数”.
解决问题:
(1)已知10是“完美数”,请将它写成a2+b2;(a、b是整数)的形式 10=32+1210=32+12;
(2)若x2-4x+3可配方成(x-m)2+n(m、n为常数),则mn=-2-2;
探究问题:
(3)已知x2+y2-2x+6y+10=0,则x+y=-2-2;
(4)已知S=x2+9y2+4x-12y+k(x、y是整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由.
【考点】配方法的应用;非负数的性质:偶次方.
【答案】10=32+12;-2;-2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/16 18:0:9组卷:113引用:2难度:0.7
相似题
-
1.设x,y都是实数,请探究下列问题,
(1)尝试:①当x=-2,y=1时,∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
②当x=1,y=2时,∵x2+y2=5,2xy=4,∴x2+y2>2xy.
③当x=2,y=2.5时,∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
④当x=3,y=3时,∵x2+y2=18,2xy=18,∴x2+y22xy.
(2)归纳:x2+y2与2xy有怎样的大小关系?试说明理由.
(3)运用:求代数式的最小值.x2+4x2发布:2025/5/21 17:30:1组卷:188引用:2难度:0.5 -
2.基本不等式的性质:一般地,对于a>0,b>0,我们有a+b≥2
,当且仅当a=b时等号成立.例如:若a>0,则a+ab=6,当且仅当a=3时取等号,a+9a≥2a•9a的最小值等于6.根据上述性质和运算过程,若x>1,则4x+9a的最小值是( )1x-1发布:2025/5/23 13:30:1组卷:839引用:6难度:0.4 -
3.已知a,b,c满足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,则a2+b2+c2等于( )
发布:2024/12/23 12:30:2组卷:397引用:9难度:0.4