试卷征集
加入会员
操作视频

勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一,它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.
(1)证明勾股定理
据传当年毕达哥拉斯借助如图3所示的两个图验证了勾股定理,请你说说其中的道理.

(2)应用勾股定理
①应用场景1——在数轴上画出表示无理数的点.
如图1,在数轴上找出表示4的点A,过点A作直线l垂直于DA,在l上取点B,使AB=2,以点D为圆心,DB为半径作弧,则弧与数轴的交点C表示的数是
13
+1
13
+1

②应用场景2——解决实际问题.
如图2,郑州某公园有一秋千,秋千静止时,踏板离地的垂直高度BE=0.5m,将它往前推2m至C处时,水平距离CD=2m,踏板离地的垂直高度CF=1.5m,它的绳索始终拉直,求绳索AC的长.

【答案】
13
+1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/3 8:0:9组卷:353引用:5难度:0.5
相似题
  • 1.由四个全等的直角三角形如图所示的“赵爽弦图”,若直角三角形斜边长为2,一个锐角为30°,则图中阴影部分的面积为(  )

    发布:2025/6/15 7:30:2组卷:2199引用:8难度:0.9
  • 2.小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图2,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a2+b2=c2

    发布:2025/6/15 2:30:1组卷:617引用:2难度:0.5
  • 3.利用下面的图形分别给出勾股定理的两种证明.

    发布:2025/6/15 6:0:1组卷:233引用:2难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正