已知△ABC为等边三角形,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图1,若DE⊥AB,垂足为E,AC=3,则CF=3434;
(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:DE=DF;
(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交于点F,作DN⊥AC于点N,若DN=FN,求证:BE+CF=3(BE-CF).

3
4
3
4
BE
+
CF
=
3
(
BE
-
CF
)
【考点】几何变换综合题.
【答案】
3
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/4 8:0:9组卷:22引用:1难度:0.3
相似题
-
1.【发现奥秘】
(1)如图1,在等边三角形ABC中,AB=2,点E是△ABC内一点,连接AE,EC,BE,分别将AC,EC绕点C顺时针旋转60°得到DC,FC,连接AD,DF,EF.当B,E,F,D四个点满足 时,BE+AE+CE的值最小,最小值为 .
【解法探索】
(2)如图2,在△ABC中,∠ACB=90°,AC=BC,点P是△ABC内一点,连接PA,PB,PC,请求出当PA+PB+PC的值最小时∠BCP的度数,并直接写出此时PA:PB:PC的值.(提示:分别将PC,AC绕点C顺时针旋转60°得到DC,EC,连接PD,DE,AE)
【拓展应用】
(3)在△ABC中,∠ACB=90°,∠BAC=30°,BC=2,点P是△ABC内一点,连接PA,PB,PC,直接写出当PA+PB+PC的值最小时,PA:PB:PC的值.发布:2025/5/26 0:30:1组卷:232引用:1难度:0.4 -
2.下面是某数学兴趣小组对一个数学问题作的探究活动:
问题:
如图1,已知,∠MON=60°,点A在边OM上,点P是边ON上一动点,以线段AP为斜边作Rt△ACP,AC=PC,∠ACP=90°(C和O在AP的两侧),连接OC,将线段OC绕C逆时针旋转90°至BC,连接OB.
A.SSS
B.SAS
C.AAS
D.ASA
(2)如图2,小颖同学作BD⊥ON于D,她认为OA与BD存在某种数量关系,那么OA与BD是否有数量关系?如果有数量关系,请你写出OA与BD的数量关系并说明理由;
(3)如图1,小华说,当OA=2,当△AOP是直角三角形时,可求出OB2的值,请你直接写出OB2的值.发布:2025/5/25 22:30:2组卷:142引用:2难度:0.1 -
3.如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90°得到AG,连接GC,HB.
(1)证明:△AHB≌△AGC;
(2)如图2,连接GF,HG,HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AG=QG,AB=AC=4,求EH的长度.发布:2025/5/26 1:0:1组卷:181引用:1难度:0.3