某市为传播中华文化,举办中华文化知识选拔大赛.决赛阶段进行线上答题.题型分为选择题和填空题两种,每次答题相互独立.选择题答对得5分,否则得0分.填空题答对得4分,否则得0分.将得分逐题累加.
(1)若小明直接做3道选择题,他做对这3道选择题的概率依次为45,34,23.求他得分不低于10分的概率;
(2)规定每人最多答3题,若得分高于7分,则通过决赛,立即停止答题,否则继续答题,直到答完3题为止.已知小红做对每道选择题的概率均为14,做对每道填空题的概率均为310.
现有两种方案
方案一:依次做一道选择题两道填空题;
方案二:做三道填空题.
请你推荐一种合理的方式给小红.
4
5
3
4
2
3
1
4
3
10
【答案】(1);
(2)推荐方案二给小红.
5
6
(2)推荐方案二给小红.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/10 8:0:9组卷:18引用:2难度:0.7
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7