在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动--折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.
实践发现:
对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠;纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.
(1)折痕BM 是是(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:等边三角形等边三角形;进一步计算出∠MNE=60°60°;
(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=15°15°;
拓展延伸:
(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA′交ST于点O,连接AT,SA′.求证:四边形SATA′是菱形.
解决问题:
(4)如图④,矩形纸片ABCD中,AB=10,AD=26,点S是边AD上的一动点,折叠纸片,使点A落在BC边上的点A′处,并且折痕过点S,交AB边于点T,把纸片展平.同学们小组讨论后,得出线段AT长度的取值范围,请你求出线段AT长度的取值范围.

【考点】四边形综合题.
【答案】是;等边三角形;60°;15°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/21 8:0:9组卷:247引用:2难度:0.3
相似题
-
1.[证明体验]
(1)如图1,在△ABC中,点D在边BC上,点F在边AC上,AB=AD,FB=FC,AD与BF相交于点E.求证:∠ABF=∠CAD.
[思考探究]
(2)如图2,在(1)的条件下,过点D作AB的平行线交AC于点G,若DE=2AE,AB=6,求DG的长.
[拓展延伸]
(3)如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,∠ABC=∠ACB=67.5°,OD=2OB,OA=,求CD的长.2发布:2025/5/23 23:30:1组卷:687引用:3难度:0.3 -
2.如图,在矩形ABCD中,AD=
AB,∠BAD的平分线交BC于点E.DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AD=AE;②∠AED=∠CED;③OE=OD;④BH=HF;⑤BC-CF=2HE,其中正确的有( )2发布:2025/5/23 22:30:2组卷:1273引用:4难度:0.2 -
3.【问题提出】
(1)如图①,OP为∠AOB的平分线,PC⊥OA于点C,PD⊥OB于点D,若S△OPC=3,则S△OPD=
【问题探究】
(2)如图②,a、b是两条平行的直线,且a、b之间的距离为12,点A为直线a上一点,点B、C为直线b上两点,且点B在点C的左侧,若∠BAC=45°,求BC的最小值;
【问题解决】
(3)如图③,四边形ABCD是园林规划局欲修建的一块平行四边形园林的大致示意图,沿对角线BD修一条人行走道,沿∠BAD的平分线AP(点P在BD上)修一条园林灌溉水渠.根据规划要求,∠ABC=120°,AP=120米,且使得平行四边形ABCD的面积尽可能小,问平行四边形ABCD的面积是否存在最小值?若存在,求出其最小值,若不存在,请说明理由.发布:2025/5/23 22:30:2组卷:137引用:1难度:0.2