试卷征集
加入会员
操作视频

马尔科夫链是概率统计中的一个重要模型,因俄国数学家安德烈•马尔科夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,…次状态无关,即P(Xn+1|⋯,Xn-2,Xn-1,Xn)=P(Xn+1|Xn).已知甲盒子中装有2个黑球和1个白球,乙盒子中装有2个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复n次这样的操作.记甲盒子中黑球个数为Xn,恰有2个黑球的概率为an,恰有1个黑球的概率为bn
(1)求a1,b1和a2,b2
(2)证明:
{
2
a
n
+
b
n
-
6
5
}
为等比数列(n≥2且n∈N*);
(3)求Xn的期望(用n表示,n≥2且n∈N*).

【答案】(1)
b
1
=
2
3
a
1
=
1
3
b
2
=
5
9
a
2
=
1
3

(2)证明过程见解析;
(3)
E
X
n
=
6
5
+
2
15
1
6
n
-
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/1 7:0:9组卷:571引用:6难度:0.6
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正