试卷征集
加入会员
操作视频

如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.
(1)求抛物线的解析式.
(2)若点P从A点出发,沿A→B方向以1个单位长度/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D且平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?
(3)抛物线上是否存在点M,使得以点P,M,E,C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

【考点】二次函数综合题
【答案】(1)y=-x2+2x+3;
(2)当t=2时,△ACQ的面积最大,最大值为1;
(3)存在点M,使得以点P,M,E,C为顶点的四边形是平行四边形,点M的坐标为(2,3),(-2,-5)或(4,-5).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 8:0:10组卷:63引用:1难度:0.2
相似题
  • 1.在平面直角坐标系xOy中,二次函数y=ax2+bx+4(a<0)的图象与x轴交于点A(-2,0)和点B(4,0),与y轴交于点C,直线BC与对称轴于点D.
    (1)求二次函数的解析式.
    (2)若抛物线y=ax2+bx+4(a<0)的对称轴上有一点M,以O、C、D、M四点为顶点的四边形是平行四边形时,求点M的坐标.
    (3)将抛物线y=ax2+bx+4(a<0)向右平移2个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点,当以D、E、F、G四点为顶点的四边形是菱形时,求点F的坐标.

    发布:2025/5/23 23:30:1组卷:634引用:3难度:0.3
  • 2.如图,抛物线y=ax2+bx+c与x轴交于A(
    3
    ,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=
    3
    OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.
    (1)求抛物线的解析式;
    (2)设点P的横坐标为m,当FH=HP时,求m的值;
    (3)当直线PF为抛物线的对称轴时,以点H为圆心,
    1
    2
    HC为半径作⊙H,点Q为⊙H上的一个动点,求
    1
    4
    AQ+EQ的最小值.

    发布:2025/5/24 0:0:1组卷:3204引用:2难度:0.3
  • 3.如图,是某水上乐园为亲子游乐区新设滑梯的示意图,其中线段PA是竖直高度为6米的平台,PO垂直于水平面,滑道分为两部分,其中AB段是双曲线y=
    10
    x
    的一部分,BCD段是抛物线的一部分,两滑道的连接点B为抛物线的顶点,且B点的竖直高度为2米,滑道与水平面的交点D距PO的水平距离为7米,以点O为坐标原点建立平面直角坐标系,滑道上点的竖直高度为y,距直线PO的水平距离为x.
    (1)请求出滑道BCD段y与x之间的函数关系式;
    (2)当滑行者滑到C点时,距地面的距离为1米,求滑行者此时距滑道起点A的水平距离;
    (3)在建模实验中发现,为保证滑行者的安全,滑道BCD落地点D与最高点B连线与水平面夹角应不大于45°,且由于实际场地限制,
    OP
    OD
    1
    2
    ,求OD长度的取值范围.

    发布:2025/5/23 23:0:1组卷:271引用:2难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正