在平面直角坐标系xOy中,对于△ABC与⊙O,给出如下定义:若△ABC的一个顶点在⊙O上,除这个顶点外△ABC与⊙O存在且仅存在一个公共点,则称△ABC为⊙O的“相关三角形”.
(1)如图1,⊙O的半径为1,点C(2,0),△AOC为⊙O的“相关三角形”.
在点P1(0,1),P2(12,32),P3(1,1)这三个点中,点A可以与P2P2点重合;
(2)如图2,⊙O的半径为1,点A(0,2),点B是x轴上的一动点,且点B的横坐标xB的取值范围是-1<xB<1,点C在第一象限,若△ABC为直角三角形,且△ABC为⊙O的“相关三角形”.求点C的横坐标xC的取值范围;
(3)⊙O的半径为r,直线y=-3x+3与⊙O在第一象限的交点为A,点C(2,0),若平面直角坐标系xOy中存在点B(点B在x轴下方),使得△ABC为等腰直角三角形,且△ABC为⊙O的“相关三角形”.直接写出r的取值范围.

1
2
3
2
y
=
-
3
x
+
3
【考点】圆的综合题.
【答案】P2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/18 8:0:8组卷:549引用:3难度:0.3
相似题
-
1.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
(1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
(2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3 -
2.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
(1)求证:直线CE是圆O的切线.
(2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
(3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1 -
3.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
(1)求证:BE是圆O的切线;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
(3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1
相关试卷