试卷征集
加入会员
操作视频

某商场为促销设计了一项回馈客户的抽奖活动,抽奖规则是:有放回的从装有大小相同的6个红球和4个黑球的袋中任意抽取一个,若第一次抽到红球则奖励50元的奖券,抽到黑球则奖励25元的奖券;第二次开始,每一次抽到红球则奖券数额是上一次奖券数额的2倍,抽到黑球则奖励25元的奖券,记顾客甲第n次抽奖所得的奖券数额Xn(1≤n≤6)的数学期望为E(Xn).
(1)求E(X1)及X2的分布列.
(2)写出E(Xn)与E(Xn-1)(n≥2)的递推关系式,并证明{E(Xn)+50}为等比数列;
(3)若顾客甲一共有6次抽奖机会,求该顾客所得的所有奖券数额的期望值.(考数据:1.26≈2.986)

【答案】(1)E(X1)=40,X2的分布列为:
X2 25 50 100
P 0.4 0.24 0.36
(2)E(Xn)+50=1.2E(Xn-1)+60=1.2(E(Xn-1)+50)(2≤n≤6),证明过程见解析;
(3)593.7元.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/11 1:0:9组卷:94引用:2难度:0.5
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正