已知点P和非零实数λ,若两条不同的直线l1,l2均过点P,且斜率之积为λ,则称直线l1,l2是一组“Pλ共轭线对”,如直l1:y=2x,l2:y=-12x是一组“O-1共轭线对”,其中O是坐标原点.
(1)已知点A(0,1)、点B(-1,0)和点C(1,0)分别是三条直线PQ,QR,RP上的点(A,B,C与P,Q,R均不重合),且直线PR,PQ是“P1共轭线对”,直线QP,QR是“Q4共轭线对”,直线RP,RQ是“R9共轭线对”,求点P的坐标;
(2)已知点Q(-1,-2),直线l1,l2是“Q-2共轭线对”,当l1的斜率变化时,求原点O到直线l1,l2的距离之积的取值范围.
y
=
-
1
2
x
Q
(
-
1
,-
2
)
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/26 6:0:3组卷:92引用:3难度:0.5