如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,点D在直线BC上运动,连接AD,以AD为斜边在直线AD的右侧作Rt△ADE,其中∠AED=90°,∠DAE=30°.
(1)如图1,点D运动到点B的左侧时,DE与AB相交于点O,当AO平分∠DAE时,若DC=4,求AD的长;
(2)如图2,点D沿射线BC方向运动过程中,当BD=AB时,连接BE,过点B作BF⊥BE交EA的延长线于点F,取CD的中点G,连接EG.猜测BG与GE的数量关系,并证明你的猜想;
(3)如图3,点D沿射线CB方向运动过程中,连接BE,将线段BE绕点E顺时针方向旋转60°,得到线段EH,连接AH、CH,若AB=3,当CH+12AH取得最小值时,请直接写出△BCE的面积.

1
2
【考点】几何变换综合题.
【答案】(1)2;(2)BG=EG,证明见解答;(3).
6
3
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/31 8:0:9组卷:319引用:2难度:0.4
相似题
-
1.如图①,在Rt△ABC中,∠B=90°,AB=5,BC=12,CD=5,DE∥AB.将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)①当α=0°时,=;②当α=180°时,AEBD=.AEBD
(2)试判断:当0≤α≤360°时,的大小有无变化?请仅就图②的情形给出证明.AEBD
(3)当△EDC旋转到A,D,E三点共线时,直接写出线段BD的长.发布:2025/5/23 20:0:1组卷:194引用:3难度:0.3 -
2.如图,在平面直角坐标系中有Rt△ABO,∠BAO=90°,∠ABO=30°,B(-8,0).将三角形ABO绕着点O顺时针方向旋转,旋转后点A与A1,点B与B1相重合.
(1)当旋转角为60°时,求点B1的坐标;
(2)当点B1落在BA的延长线上时,求点B1的坐标.
(3)若点E为AB的中点,求EB1的最大值和最小值.(直接写出结果即可)发布:2025/5/23 18:0:1组卷:688引用:5难度:0.1 -
3.如图1,在△ABC中,∠BAC=90°,AB=AC=4,点E为边AC上一点,以AE为斜边,在△ABC外,作△ADE,使得∠ADE=90°,且DE=DA.现将△ADE绕点A逆时针旋转,旋转角为α(0°<α<90°),连接BE.
(1)如图2,当α=15°且BE∥AD时,求BE的长;
(2)连接CE,设CE的中点为点F,AE的中点为点H,连接DF,直线DF与线段BE交于点G,连接GH.
①求证:DF⊥BE;
②探索线段GH,GD,GE之间的数量关系.发布:2025/5/23 22:0:2组卷:430引用:2难度:0.2