阅读下列材料:常用分解因式的方法有提取公因式法、公式法,但有部分多项式只单纯用上述方法就无法分解,如x2-2xy+y2-16,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解,过程如下:x2-2xy+y2-16=(x-y)2-16=(x-y+4)(x-y-4)这种分解因式的方法叫分组分解法.
利用这种分组的思想方法解决下列问题:
(1)因式分解:b2-2bc+c2-1=(b-c+1)(b-c-1)(b-c+1)(b-c-1);
(2)已知a,b,c分别是△ABC三边的长,且2a2+b2+c2-2a(b+c)=0,请判断△ABC的形状,并说明理由.
【考点】因式分解的应用.
【答案】(b-c+1)(b-c-1)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/9 8:0:8组卷:339引用:4难度:0.5
相似题
-
1.若一个四位数M的个位数字与十位数字的和与它们的差之积恰好是M去掉个位数字与十位数字后得到的两位数,则这个四位数M为“和差数”.
例如:M=1514,∵(4+1)(4-1)=15,∴1514是“和差数”.
又如:M=2526,∵(6+2)(6-2)=32≠25,∴2526不是“和差数”.
(1)判断2022,2046是否是“和差数”,并说明理由;
(2)一个“和差数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记,且G(M)=dc.当G(M),P(M)均是整数时,求出所有满足条件的M.P(M)=Mc+d发布:2025/5/24 7:30:1组卷:222引用:1难度:0.4 -
2.已知ab=3,a+b=4,则代数式a3b+ab3的值为 .
发布:2025/5/24 4:30:1组卷:151引用:2难度:0.7 -
3.材料:一个两位数记为x,另外一个两位数记为y,规定F(x,y)=
,当F(x,y)为整数时,称这两个两位数互为“均衡数”.x+y7
例如:x=42,y=21,则F(42,21)==9,所以42,21互为“均衡数”,又如x=54,y=43,F(54,43)=42+217不是整数,所以54,43不是互为“均衡数”.54+437
(1)请判断40,41和52,17是不是互为“均衡数”,并说明理由.
(2)已知x,y是互为“均衡数”,且x=10a+b,y=20a+2b+c+5,(1≤a≤4,1≤b≤4,0≤c≤4,且a、b、c为整数),规定G(x,y)=2x-y.若G(x,y)除以7余数为2,求出F(x,y)值.发布:2025/5/24 8:30:1组卷:205引用:2难度:0.4