五行,指金、木、水、火、土五个元素.五行学说用五行之间的生、克关系来阐释事物之间的相互关系,是中国文化的重要组成部分,五行之间相生相克的关系如图所示.现有一个不透明的盒子,盒子中有5个完全相同的小球,5个小球上分别标有“金、木、水、火、土”5个字,代表5个元素.现在甲、乙两人各从盒子中随机抽取一个球:
(1)若甲抽到的元素克乙抽取的元素,则甲+2分;
(2)若甲抽到的元素生乙抽取的元素,则甲-1分;
(3)若甲抽到的元素被乙抽取的元素克,则甲-2分;
(4)若甲抽到的元素被乙抽取的元素生,则甲+1分;
(5)若甲抽到的元素与乙抽取的元素相同,则甲不计分.
现有两个游戏方案可供甲选择:
方案一:乙先从盒子中随机抽取一个元素后放回,然后甲再从盒子中随机抽取一个元素;
方案二:乙先从盒子中随机抽取一个元素不放回,然后甲再从盒子中随机抽取一个元素.
每次积完分后把所有小球放回盒子再进行下次游戏.
(1)若按方案一进行两次游戏,求两次游戏后甲的积分之和为1分的概率;
(2)现在要从方案一或方案二中选一个方案进行两次游戏,若两次游戏后甲的积分之和超过1分,则甲获得胜利.为了尽可能获胜,甲应该选择哪个方案,请说明理由.
【答案】(1);
(2)甲应该选择方案二,理由见解答.
4
25
(2)甲应该选择方案二,理由见解答.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 8:0:10组卷:19引用:1难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:197引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7