在平面直角坐标系xOy中,已知圆O:x2+y2=1,点F(2,0),以线段FG为直径的圆与圆O相切,记动点G的轨迹为W.
(1)求W的方程;
(2)设点M在x轴上,点N(0,1),在W上是否存在两点A,B,使得当A,B,N三点共线时,△ABM是以AB为斜边的等腰直角三角形?若存在,求出点M的坐标和直线AB的方程;若不存在,请说明理由.
【答案】(1);
(2)M(2,0),直线AB的方程为y=x+1,或M(-2,0),直线AB的方程为y=-x+1.
x
2
-
y
2
3
=
1
(2)M(2,0),直线AB的方程为y=x+1,或M(-2,0),直线AB的方程为y=-x+1.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/18 3:0:2组卷:79引用:3难度:0.5
相似题
-
1.已知双曲线C:
=1(a>0,b>0)的左顶点为A,过左焦点F的直线与C交于P,Q两点.当PQ⊥x轴时,|PA|=x2a2-y2b2,△PAQ的面积为3.10
(1)求C的方程;
(2)证明:以PQ为直径的圆经过定点.发布:2024/12/18 0:0:1组卷:706引用:8难度:0.5 -
2.如图,在平面直角坐标系xOy中,已知等轴双曲线E:
(a>0,b>0)的左顶点A,过右焦点F且垂直于x轴的直线与E交于B,C两点,若△ABC的面积为x2a2-y2b2=1.2+1
(1)求双曲线E的方程;
(2)若直线l:y=kx-1与双曲线E的左,右两支分别交于M,N两点,与双曲线E的两条渐近线分别交于P,Q两点,求的取值范围.|MN||PQ|发布:2024/10/31 12:30:1组卷:541引用:11难度:0.5 -
3.已知双曲线
的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点,若A为线段BF1的中点,且BF1⊥BF2,则C的离心率为( )C:x2a2-y2b2=1(a>0,b>0)发布:2024/11/8 21:0:2组卷:444引用:8难度:0.5