先阅读下面的内容,再解决问题:
问题:对于形如x2+2xa+a2,这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa-3a2=(x2+2xa+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:
(1)分解因式:a2-8a+15;
(2)若a2+b2-14a-8b+65+|12m-n|=0
①当a,b,m满足条件:2a×4b=8m时,求m的值;
②若△ABC的三边长是a,b,c,且c边的长为奇数,求△ABC的周长.
1
2
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/8 8:0:10组卷:1420引用:6难度:0.4
相似题
-
1.已知a、b、c是△ABC的三边长,且a、b、c满足a2+2b2+c2-2ab-2bc=0,请判断△ABC的形状.
发布:2025/6/20 3:0:1组卷:1283引用:4难度:0.3 -
2.材料一:如果四位数n满足千位数字与百位数字的差等于十位数字与个位数字的差,则称这个数为“等差数”,例如:3423,因为3-4=2-3,所以3423是一个“等差数”.
材料二:对于一个四位数n,将这个四位数n千位上的数字与百位上的数字对调、十位上的数字与个位上的数字对调后可以得到一个新的四位数m,记F(n)=,例如n=1425,对调千位上数字与百位上数字及十位上数字与个位上数字得到4152,所以F(n)=n-m101=-27.1425-4152101
(1)判断n=6273是否是“等差数”,并求出F(n)的值;
(2)若s,t都是“等差数”,其中s=100x+y+7381,t=1000a+10b+524(0≤x≤6,0≤y≤7,1≤a≤9,0≤b≤7,x、y、a、b都是整数),规定:k=,若2F(s)-F(t)=27,求k的最大值.F(s)F(t)发布:2025/6/19 22:30:1组卷:687引用:4难度:0.4 -
3.若正整数x,y满足x2-2xy-8y2-16=0,则x+y=.
发布:2025/6/20 3:0:1组卷:130引用:1难度:0.5